TITLE 19 NATURAL RESOURCES AND WILDLIFE
CHAPTER 15 OIL AND GAS
PART 11 HYDROGEN SULFIDE GAS

19.15.11.1 ISSUING AGENCY: Energy, Minerals and Natural Resources Department, Oil Conservation Division.
[19.15.11.1 NMAC - N, 12/1/08]

19.15.11.2 SCOPE: 19.15.11 NMAC applies to a person subject to the division’s jurisdiction, including a person engaged in drilling, stimulating, injecting into, completing, working over or producing an oil, gas or carbon dioxide well or a person engaged in gathering, transporting, storing, processing or refining of oil, gas or carbon dioxide. 19.15.11 NMAC does not exempt or otherwise excuse surface waste management facilities the division permits pursuant to 19.15.36 NMAC from more stringent conditions on the handling of hydrogen sulfide required of such facilities by 19.15.36 NMAC or more stringent conditions in permits issued pursuant to 19.15.36 NMAC, nor shall the facilities be exempt or otherwise excused from the requirements set forth in 19.15.11 NMAC by virtue of permitting under 19.15.36 NMAC.
[19.15.11.2 NMAC - Rp, 19.15.3.118 NMAC, 12/1/08]

19.15.11.3 STATUTORY AUTHORITY: 19.15.11 NMAC is adopted pursuant to the Oil and Gas Act, NMSA 1978, Section 70-2-6, Section 70-2-11 and Section 70-2-12.
[19.15.11.3 NMAC - N, 12/1/08]

19.15.11.4 DURATION: Permanent.
[19.15.11.4 NMAC - N, 12/1/08]

19.15.11.5 EFFECTIVE DATE: December 1, 2008, unless a later date is cited at the end of a section.
[19.15.11.5 NMAC - N, 12/1/08]

19.15.11.6 OBJECTIVE: To require oil and gas operations be conducted in a manner that protects the public from exposure to hydrogen sulfide gas.
[19.15.11.6 NMAC - N, 12/1/08]

19.15.11.7 DEFINITIONS:
 A. “ANSI” means the American national standards institute.
 B. “Area of exposure” means the area within a circle constructed with a point of escape at its center and the radius of exposure as its radius.
 C. “Dispersion technique” is a mathematical representation of the physical and chemical transportation characteristics, dilution characteristics and transformation characteristics of hydrogen sulfide gas in the atmosphere.
 D. “Escape rate” means the maximum volume (Q) that is used to designate the possible rate of escape of a gaseous mixture containing hydrogen sulfide, as set forth in 19.15.11 NMAC.
 (1) For existing gas facilities or operations, the escape rate is calculated using the maximum daily rate of the gaseous mixture produced or handled or the best estimate thereof. For an existing gas well, the escape rate is calculated using the current daily absolute open flow rate against atmospheric pressure or the best estimate of that rate.
 (2) For new gas operations or facilities, the escape rate is calculated as the maximum anticipated flow rate through the system. For a new gas well, the escape rate is calculated using the maximum open-flow rate of offset wells in the pool or reservoir, or the pool or reservoir average of maximum open-flow rates.
 (3) For existing oil wells, the escape rate is calculated by multiplying the producing gas/oil ratio by the maximum daily production rate or the best estimate of the maximum daily production rate.
 (4) For new oil wells, the escape rate is calculated by multiplying the producing gas/oil ratio by the maximum daily production rate of offset wells in the pool or reservoir, or the pool or reservoir average of the producing gas/oil ratio multiplied by the maximum daily production rate.
 (5) For facilities or operations not mentioned, the escape rate is calculated using the actual flow of the gaseous mixture through the system or the best estimate of the actual flow of the gaseous mixture through the system.
E. “GPA” means the gas processors association.

F. “LEPC” means the local emergency planning committee established pursuant to the Emergency Planning and Community Right-To-Know Act, 42 U.S.C. section 11001.

G. “NACE” means the national association of corrosion engineers.

H. “Potentially hazardous volume” means the volume of hydrogen sulfide gas of such concentration that:

1. the 100-ppm radius of exposure includes a public area;
2. the 500-ppm radius of exposure includes a public road; or
3. the 100-ppm radius of exposure exceeds 3000 feet.

I. “Public area” means a building or structure that is not associated with the well, facility or operation for which the radius of exposure is being calculated and that is used as a dwelling, office, place of business, church, school, hospital or government building, or a portion of a park, city, town, village or designated school bus stop or other similar area where members of the public may reasonably be expected to be present.

J. “Public road” means a federal, state, municipal or county road or highway.

K. “Radius of exposure” means the radius constructed with the point of escape as its starting point and its length calculated using the following Pasquill-Gifford derived equation, or by such other method as the division may approve:

1. for determining the 100-ppm radius of exposure: $X = \left(\frac{(1.589)(\text{hydrogen sulfide concentration})(Q)}{10^{0.6258}}\right)$, where “X” is the radius of exposure in feet, the “hydrogen sulfide concentration” is the decimal equivalent of the mole or volume fraction of hydrogen sulfide in the gaseous mixture and “Q” is the escape rate expressed in cubic feet per day (corrected for standard conditions of 14.73 psi absolute and 60 degrees fahrenheit);

2. for determining the 500-ppm radius of exposure: $X = \left(\frac{(0.4546)(\text{hydrogen sulfide concentration})(Q)}{10^{0.6258}}\right)$, where “X” is the radius of exposure in feet, the “hydrogen sulfide concentration” is the decimal equivalent of the mole or volume fraction of hydrogen sulfide in the gaseous mixture and “Q” is the escape rate expressed in cubic feet per day (corrected for standard conditions of 14.73 psi absolute and 60 degrees fahrenheit);

3. for a well being drilled, completed, recompleted, worked over or serviced in an area where insufficient data exists to calculate a radius of exposure but where hydrogen sulfide could reasonably be expected to be present in concentrations in excess of 100 ppm in the gaseous mixture, a 100-ppm radius of exposure equal to 3000 feet is assumed.

[19.15.11.7 NMAC - Rp, 19.15.3.118 NMAC, 12/1/08]

19.15.11.8 REGULATORY THRESHOLD:

A. Determination of hydrogen sulfide concentration.

1. Each person shall determine the hydrogen sulfide concentration in the gaseous mixture within wells, facilities or operations either by testing (using a sample from each well, facility or operation); testing a representative sample; or using process knowledge in lieu of testing. If the person uses a representative sample or process knowledge, the concentration derived from the representative sample or process knowledge shall be reasonably representative of the hydrogen sulfide concentration within the well, facility or operation.

2. The person shall conduct the tests used to make the determination referred to in Paragraph (1) of Subsection A of 19.15.11.8 NMAC in accordance with applicable ASTM or GPA standards or by another division-approved method.

3. If the person conducted a test prior to January 31, 2003 that otherwise meets the requirements of Paragraphs (1) and (2) of Subsection A of 19.15.11.8 NMAC, new testing is not required.

4. If a change or alteration may materially increase the hydrogen sulfide concentration in a well, facility or operation, the person shall make a new determination in accordance with 19.15.11 NMAC.

B. Concentrations determined to be below 100 ppm. If the hydrogen sulfide concentration in a given well, facility or operation is less than 100 ppm, the person is not required to take further actions pursuant to 19.15.11 NMAC.

C. Concentrations determined to be above 100 ppm.

1. If the person determines the hydrogen sulfide concentration in a given well, facility or operation is 100 ppm or greater, then the person shall calculate the radius of exposure and comply with applicable requirements of 19.15.11 NMAC.

2. If calculation of the radius of exposure reveals that a potentially hazardous volume is present, the person shall provide results of the hydrogen sulfide concentration determination and the calculation of the radius of
exposure to the division. For a well, facility or operation, the person shall accomplish the determination, calculation and submission 19.15.11.8 NMAC requires before operations begin.

D. Recalculation. The person shall calculate the radius of exposure if the hydrogen sulfide concentration in a well, facility or operation increases to 100 ppm or greater. The person shall also recalculate the radius of exposure if the actual volume fraction of hydrogen sulfide increases by a factor of 25 percent in a well, facility or operation that previously had a hydrogen sulfide concentration of 100 ppm or greater. If calculation or recalculation of the radius of exposure reveals that a potentially hazardous volume is present, the person shall provide the results to the division within 60 days.

[19.15.11.8 NMAC - Rp, 19.15.3.118 NMAC, 12/1/08]

19.15.11.9 HYDROGEN SULFIDE CONTINGENCY PLAN:

A. When required. If a well, facility or operation involves a potentially hazardous volume of hydrogen sulfide, the person shall develop a hydrogen sulfide contingency plan that the person will use to alert and protect the public in accordance with the Subsections B through I of 19.15.11.9 NMAC.

B. Plan contents.

(1) API guidelines. The person shall develop the hydrogen sulfide contingency plan with due consideration of paragraph 7.6 of the guidelines in the API publication Recommended Practices for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide, RP-55, most recent edition, or with due consideration to another division-approved standard.

(2) Required contents. The hydrogen sulfide contingency plan shall contain information on the following subjects, as appropriate to the well, facility or operation to which it applies.

 (a) Emergency procedures. The hydrogen sulfide contingency plan shall contain information on emergency procedures the person will follow in the event of a release and shall include, at a minimum, information concerning the responsibilities and duties of personnel during the emergency, an immediate action plan as described in the API document referenced in Paragraph (1) of Subsection B of 19.15.11.9 NMAC, and telephone numbers of emergency responders, public agencies, local government and other appropriate public authorities. The plan shall also include the locations of potentially affected public areas and public roads and shall describe proposed evacuation routes, locations of road blocks and procedures for notifying the public, either through direct telephone notification using telephone number lists or by means of mass notification and reaction plans. The plan shall include information on the availability and location of necessary safety equipment and supplies.

 (b) Characteristics of hydrogen sulfide and sulfur dioxide. The hydrogen sulfide contingency plan shall include a discussion of the characteristics of hydrogen sulfide and sulfur dioxide.

 (c) Maps and drawings. The hydrogen sulfide contingency plan shall include maps and drawings that depict the area of exposure and public areas and public roads within the area of exposure.

 (d) Training and drills. The hydrogen sulfide contingency plan shall provide for training and drills, including training in the responsibilities and duties of essential personnel and periodic on-site or classroom drills or exercises that simulate a release, and shall describe how the person will document the training, drills and attendance. The hydrogen sulfide contingency plan shall also provide for training of residents as appropriate on the proper protective measures to be taken in the event of a release, and shall provide for briefing of public officials on issues such as evacuation or shelter-in-place plans.

 (e) Coordination with state emergency plans. The hydrogen sulfide contingency plan shall describe how the person will coordinate emergency response actions under the plan with the division and the New Mexico state police consistent with the New Mexico hazardous materials emergency response plan.

 (f) Activation levels. The hydrogen sulfide contingency plan shall include the activation level and a description of events that could lead to a release of hydrogen sulfide sufficient to create a concentration in excess of the activation level.

C. Plan activation. The person shall activate the hydrogen sulfide contingency plan when a release creates a hydrogen sulfide concentration greater than the activation level set forth in the hydrogen sulfide contingency plan. At a minimum, the person shall activate the plan whenever a release may create a hydrogen sulfide concentration of more than 100 ppm in a public area, 500 ppm at a public road or 100 ppm 3000 feet from the site of release.

D. Submission.

(1) Where submitted. The person shall submit the hydrogen sulfide contingency plan to the division.

(2) When submitted. The person shall submit a hydrogen sulfide contingency plan for a new well, facility or operation before operations commence. The hydrogen sulfide contingency plan for a drilling, completion, workover or well servicing operation shall be on file with the division before operations commence and may be
submitted separately or along with the APD or may be on file from a previous submission. A person shall submit a hydrogen sulfide contingency plan within 180 days after the person becomes aware or should have become aware that a public area or public road is established that creates a potentially hazardous volume where none previously existed.

E. Electronic submission. A filer who operates more than 100 wells or who operates an oil pump station, compressor station, refinery or gas plant shall submit each hydrogen sulfide contingency plan in electronic format. The file may submit the hydrogen sulfide contingency plan through electronic mail, through an Internet filing or by delivering electronic media to the division, so long as the electronic submission is compatible with the division’s systems.

F. Failure to submit plan. A person’s failure to submit a hydrogen sulfide contingency plan when required may result in denial of an application for permit to drill, cancellation of an allowable for the subject well or other enforcement action appropriate to the well, facility or operation.

G. Review, amendment. The person shall review the hydrogen sulfide contingency plan any time a subject addressed in the plan materially changes and make appropriate amendments. If the division determines that a hydrogen sulfide contingency plan is inadequate to protect public safety, the division may require the person to add provisions to the plan or amend the plan as necessary to protect public safety.

H. Retention and inspection. The hydrogen sulfide contingency plan shall be reasonably accessible in the event of a release, maintained on file at all times and available for division inspection.

I. Annual inventory of contingency plans. On an annual basis, each person required to prepare one or more hydrogen sulfide contingency plans pursuant to 19.15.11 NMAC shall file with the appropriate local emergency planning committee and the state emergency response commission an inventory of the wells, facilities and operations for which plans are on file with the division and the name, address and telephone number of a point of contact.

J. Plans required by other jurisdictions. The person may submit a hydrogen sulfide contingency plan the BLM or other jurisdiction require that meets the requirements of 19.15.11.9 NMAC to the division in satisfaction of 19.15.11.9 NMAC. [19.15.11.9 NMAC - Rp, 19.15.3.118 NMAC, 12/1/08]

19.15.11.10 SIGNS, MARKERS: For each well, facility or operation involving a hydrogen sulfide concentration of 100 ppm or greater, the person shall install and maintain signs or markers that conform with the current ANSI standard Z535.1-2002 (Safety Color Code), or some other division-approved standard. The sign or marker shall be readily readable, and shall contain the words “poison gas” and other information sufficient to warn the public that a potential danger exists. The person shall prominently post signs or markers at locations, including entrance points and road crossings, sufficient to alert the public that a potential danger exists. [19.15.11.10 NMAC - Rp, 19.15.3.118 NMAC, 12/1/08]

19.15.11.11 PROTECTION FROM HYDROGEN SULFIDE DURING DRILLING, COMPLETION, WORKOVER AND WELL SERVICING OPERATIONS:

A. API standards. The person shall conduct drilling, completion, workover and well servicing operations involving a hydrogen sulfide concentration of 100 ppm or greater with due consideration to the guidelines in the API publications Recommended Practice for Oil and Gas Well Servicing and Workover Operations Involving Hydrogen Sulfide, RP-68, and Recommended Practices for Drilling and Well Servicing Operations Involving Hydrogen Sulfide, RP-49, most recent editions, or some other division-approved standard.

B. Detection and monitoring equipment. Drilling, completion, workover and well servicing operations involving a hydrogen sulfide concentration of 100 ppm or greater shall include hydrogen sulfide detection and monitoring equipment as follows.

1. Each drilling and completion site shall have an accurate and precise hydrogen sulfide detection and monitoring system that automatically activates visible and audible alarms when the hydrogen sulfide’s ambient air concentration reaches a predetermined value the operator sets, not to exceed 20 ppm. The operator shall locate a sensing point at the shale shaker, rig floor and bell nipple for a drilling site and the cellar, rig floor and circulating tanks or shale shaker for a completion site.

2. For workover and well servicing operations, the person shall locate one operational sensing point as close to the well bore as practical. Additional sensing points may be necessary for large or long-term operations.

3. The operator shall provide and maintain as operational hydrogen sulfide detection and monitoring equipment during drilling when drilling is within 500 feet of a zone anticipated to contain hydrogen sulfide and continuously thereafter through all subsequent drilling.
C. Wind indicators. Drilling, completion, workover and well servicing operations involving a hydrogen sulfide concentration of 100 ppm or greater shall include wind indicators. The person shall have equipment to indicate wind direction present and visible at all times. The person shall install at least two devices to indicate wind direction at separate elevations that visible from all principal working areas at all times. When a sustained hydrogen sulfide concentration is detected in excess of 20 ppm at a detection point, the person shall display red flags.

D. Flare system. For drilling and completion operations in an area where it is reasonably expected that a potentially hazardous hydrogen sulfide volume will be encountered, the person shall install a flare system to safely gather and burn hydrogen-sulfide-bearing gas. The person shall locate flare outlets at least 150 feet from the well bore. Flare lines shall be as straight as practical. The person shall equip the flare system with a suitable and safe means of ignition. Where noncombustible gas is to be flared, the system shall provide supplemental fuel to maintain ignition.

E. Well control equipment. When the 100 ppm radius of exposure includes a public area, the following well control equipment is required.

1. Drilling. The person shall install a remote-controlled well control system that is operational at all times beginning when drilling is within 500 vertical feet of the formation believed to contain hydrogen sulfide and continuously thereafter during drilling. The well control system shall include, at a minimum, a pressure and hydrogen-sulfide-rated well control choke and kill system including manifold and blowout preventer that meets or exceeds the specifications in API publications Choke and Kill Systems, 16C and Blowout Prevention Equipment Systems for Drilling Wells, RP 53 or other division-approved specifications. The person shall use mud-gas separators. The person shall test and maintain these systems pursuant to the specifications referenced, according to the requirements of 19.15.11 NMAC, or as the division otherwise approves.

2. Completion, workover and well servicing. The person shall install a remote controlled pressure and hydrogen-sulfide-rated well control system that meets or exceeds API specifications or other division-approved specifications that is operational at all times during a well’s completion, workover and servicing.

F. Mud program. Drilling, completion, workover and well servicing operations involving a hydrogen sulfide concentration of 100 ppm or greater shall use a hydrogen sulfide mud program capable of handling hydrogen sulfide conditions and well control, including de-gassing.

G. Well testing. Except with prior division approval, a person shall conduct drill-stem testing of a zone that contains hydrogen sulfide in a concentration of 100 ppm or greater only during daylight hours and not permit formation fluids to flow to the surface.

H. If hydrogen sulfide encountered during operations. If hydrogen sulfide was not anticipated at the time the division issued a permit to drill but is encountered during drilling in a concentration of 100 ppm or greater, the operator shall satisfy the requirements of 19.15.11 NMAC before continuing drilling operations. The operator shall notify the division of the event and the mitigating steps that the operator has or is taking as soon as possible, but no later than 24 hours following discovery. The division may grant verbal approval to continue drilling operations pending preparation of a required hydrogen sulfide contingency plan.

19.15.11.12 PROTECTION FROM HYDROGEN SULFIDE AT OIL PUMP STATIONS, PRODUCING WELLS, TANK BATTERIES AND ASSOCIATED PRODUCTION FACILITIES, PIPELINES, REFINERIES, GAS PLANTS AND COMPRESSOR STATIONS:

A. API standards. A person shall conduct operations at oil pump stations and producing wells, tank batteries and associated production facilities, refineries, gas plants and compressor stations involving a hydrogen sulfide concentration of 100 ppm or greater with due consideration to the guidelines in the API publication Recommended Practices for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide, RP-55, latest edition or some other division-approved standard.

B. Security. A person shall protect well sites and other unattended, fixed surface facilities involving a hydrogen sulfide concentration of 100 ppm or greater from public access by fencing with locking gates when the location is within 1/4 mile of a public area. For the purposes of Subsection B of 19.15.11.12 NMAC, a surface pipeline is not considered a fixed surface facility.

C. Wind direction indicators. Oil pump stations, producing wells, tank batteries and associated production facilities, pipelines, refineries, gas plants and compressor stations involving a hydrogen sulfide concentration of 100 ppm or greater shall have equipment to indicate wind direction. The person shall install wind direction equipment that is visible from all principal working areas at all times.

D. Control equipment. When the 100 ppm radius of exposure includes a public area, the following
additional measures are required.

(1) The person shall install and maintain in good operating condition safety devices, such as automatic shut-down devices, to prevent hydrogen sulfide’s escape. Alternatively, the person shall establish safety procedures to achieve the same purpose.

(2) A well shall possess a secondary means of immediate well control through the use of an appropriate christmas tree or downhole completion equipment. The equipment shall allow downhole accessibility (reentry) under pressure for permanent well control.

E. Tanks or vessels. The person shall chain each stair or ladder leading to the top of a tank or vessel containing 300 ppm or more of hydrogen sulfide in the gaseous mixture or mark it to restrict entry.

19.15.11.13 PERSONNEL PROTECTION AND TRAINING: The person shall provide persons responsible for implementing a hydrogen sulfide contingency plan training in hydrogen sulfide hazards, detection, personal protection and contingency procedures.

19.15.11.14 STANDARDS FOR EQUIPMENT THAT MAY BE EXPOSED TO HYDROGEN SULFIDE: Whenever a well, facility or operation involves a potentially hazardous hydrogen sulfide volume, the person shall select equipment with consideration for both the hydrogen sulfide working environment and anticipated stresses and shall use NACE Standard MR0175 (latest edition) or some other division-approved standard for selection of metallic equipment or, if applicable, use adequate protection by chemical inhibition or other methods that control or limit hydrogen sulfide’s corrosive effects.

19.15.11.15 EXEMPTIONS: A person may petition the director or the director’s designee for an exemption to a requirement of 19.15.11 NMAC. A petition shall provide specific information as to the circumstances that warrant approval of the exemption requested and how the person will protect public safety. The director or the director’s designee, after considering all relevant factors, may approve an exemption if the circumstances warrant and so long as the person protects public safety.

19.15.11.16 NOTIFICATION OF THE DIVISION: The person shall notify the division upon a release of hydrogen sulfide requiring activation of the hydrogen sulfide contingency plan as soon as possible, but no more than four hours after plan activation, recognizing that a prompt response should supercede notification. The person shall submit a full report of the incident to the division on form C-141 no later than 15 days following the release.

HISTORY of 19.15.11 NMAC:

History of Repealed Material: 19.15.3 NMAC, Drilling (filed 10/29/2001) repealed 12/1/08.

NMAC History:
That applicable portion of 19.15.3 NMAC, Drilling (Section 118) (filed 10/29/2001) was replaced by 19.15.11 NMAC, Hydrogen Sulfide Gas, effective 12/1/08.